SUBSTRATE TEMPERATURE EFFECT ON THE STRUCTURAL AND OPTICAL PROPERTIES OF ZnSe THIN FILMS

نویسنده

  • J. BEGUM
چکیده

Zinc selenide (ZnSe) thin films were deposited on to chemically and ultrasonically cleaned glass substrates at different substrate temperatures from room temperature to 200C keeping the thickness fixed at 300 nm by using thermal evaporation method in vacuum. The structural properties of the films were ascertained by X-ray diffraction (XRD) method utilizing a diffractometer. The optical properties were measured in the photon wavelength ranging between 300 and 2500 nm by using a UV-VIS-NIR spectrophotometer. The XRD patterns reveal that the films were polycrystalline in nature exhibiting f.c.c zincblende structure with average lattice parameter, a = 5.6873Å. The grain size, strain and dislocation densities of the films have been calculated. The optical transmittance and reflectance were utilized to compute the absorption coefficient, band gap energy and refractive index of the films. The band gap energy of the films was extracted from the absorption spectra. The direct band gap energy of the films slightly increases with substrate temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate

ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...

متن کامل

The effect of Ga-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis

In this research, zinc oxide thin films with gallium impurity have been deposited using the spray pyrolysis technique. The structural and optical properties of these films are investigated as a function of gallium doping concentrations. The ZnO and ZnO:Ga  films grown at a substrate temperature of 350 ºC with gallium doping concentrations from 1.0 to 5.0.%. The XRD analysis indicated that ZnO f...

متن کامل

Substrate Effects on the Structural Properties of Thin Films of Lead Sulfide

Nanocrystalline PbS thin films are deposited on glass and alumina substratesthrough the chemical bath deposition technique by creating similar conditions, in orderto investigate the effects of the substrate. The structural and optical properties of PbSfilms are investigated by X-ray diffraction, scanning electron microscope, and UV–Vis.The structural analyses of the films indicate that they are...

متن کامل

Effect of Zn:Se Ratio on the Properties of Sprayed ZnSe Thin Films

The effect of Zn:Se ratio on the photoconducting properties of ZnSe thin films has been studied. The ZnSe thin films have been deposited onto glass substrates by the spray pyrolysis method, the substrate temperature kept at 430◦C using mixed aqueous solutions of ZnCl2 and SeO2 with different Zn:Se ratios. Their electrical, structural, and photoconductivity properties have been studied. The valu...

متن کامل

A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates

The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012